Weak Type Inequalities for Some Integral Operators on Generalized Non-Homogeneous Morrey Spaces

Hendra Gunawan
Department of Mathematics, Bandung Institute of Technology, Bandung 41032, Indonesia.
hgunawan@math.itb.ac.id

Denny Ivanal Hakim
Department of Mathematics, Bandung Institute of Technology, Bandung 41032, Indonesia.
dnny_hkm@yahoo.com

Yoshihiro Sawano
Department of Mathematics and Information Sciences, Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji, Tokyo, 192-0397, Japan
yoshihiro-sawano@celery.ocn.ne.jp

Idha Sihwaningrum
Department of Mathematics, Jenderal Soedirman University, Purwokerto 53122, Indonesia
idha.sihwaningrum@unsoed.ac.id

Abstract

In this paper, we prove weak type inequalities for some integral operators, especially generalized fractional integral operators, on generalized Morrey spaces of non-homogeneous type. The inequality for generalized fractional integral operators is proved by using two different techniques: one uses the Chebyshev inequality and some inequalities involving the modified Hardy-Littlewood maximal operator, and another uses a Hedberg type inequality and weak type inequalities for the modified Hardy-Littlewood maximal operator. Our results generalize the weak type inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces and extend to some singular integral operators. In addition, we also prove the boundedness of generalized fractional integral operators on generalized Orlicz-Morrey spaces.

Mathematics Subject Classification: 42B20, 26A33, 47B38, 47G10.

Keywords: Weak type inequalities, generalized fractional integral operators, generalized non-homogeneous Morrey spaces, singular integrals, generalized Orlicz-Morrey spaces.
1 Introduction

In this paper, we prove that the theory of generalized Morrey spaces can be staged on the non-doubling setting on \mathbb{R}^d, so that we assume that μ is a positive Borel measure on \mathbb{R}^d satisfying the growth condition, that is, there exist $n \in [0,d]$ and $C_\mu > 0$ such that

$$\mu(B(a, r)) \leq C_\mu r^n$$

for any ball $B(a, r)$ centered at $a \in \mathbb{R}^d$ with radius $r > 0$ (see [21, 22, 23, 35]). For $0 < n \leq d$ and a measurable function $\rho : (0, \infty) \to (0, \infty)$, we define the generalized fractional integral operator I_ρ by

$$I_\rho f(x) = \int_{\mathbb{R}^d} \frac{\rho(|x-y|)}{|x-y|^n} f(y) d\mu(y)$$

for any suitable function f on \mathbb{R}^d. This operator dates back to the book when $\rho(t) = t^\alpha$ for $0 < \alpha < n$; [3, Section 6.1]. Note that if μ is the Lebesgue measure, then $I_\rho = I_\alpha$ is the fractional integral operator introduced in [15, 33]. See also [16, 34] for exhaustive and comprehensive explanation about the operator. Below, we shall always assume the Dini condition, that is, $\int_0^1 \frac{\rho(t)}{t} dt < \infty$ and we also assume that ρ satisfies the so-called growth condition, namely there exist constants $C > 0$ and $0 < 2k_1 < k_2 < \infty$ such that

$$\sup_{\frac{1}{2} < s \leq r} \rho(s) \leq C \int_{k_1 r}^{k_2 r} \frac{\rho(t)}{t} dt$$

for every $r > 0$. For convenience, write $\rho^*(r) = \int_{k_1 r}^{k_2 r} \frac{\rho(t)}{t} dt$. Note that if ρ satisfies the doubling condition, that is, there exist a constant $C > 0$ such that $\frac{1}{C} \leq \frac{\rho(r)}{\rho(s)} \leq C$ whenever $\frac{1}{2} \leq \frac{r}{s} \leq 2$, then ρ satisfies the growth condition. See [4, 11, 18, 20] for discussion about I_ρ, where ρ satisfies the doubling condition.

Now, we say that a function f belongs to the generalized non-homogeneous Morrey space $L^{p, \phi}(\mu) = L^{p, \phi}(\mathbb{R}^d, \mu)$, for a function $\phi : (0, \infty) \to (0, \infty)$ and $1 \leq p < \infty$ if

$$\|f\|_{L^{p, \phi}(\mu)} := \sup_{B(a, r) \subseteq \mathbb{R}^d} \frac{1}{\phi(r)} \left(\frac{1}{r^n} \int_{B(a, r)} |f(y)|^p d\mu(y) \right)^{1/p} < \infty.$$

Note that this definition is a special case of [10, Definition 1.1], where different type of operators are considered. In this paper, we shall assume the following two conditions:

(1.a) The function ϕ is almost decreasing, that is, there exists a constant $C_1 > 0$ such that $\phi(r) \geq C_1 \phi(s)$ for every $r \leq s$.

(1.b) The function $r \mapsto r^n \phi(r)^p$ is almost increasing, that is, there exists a constant $C_2 > 0$ such that $r^n \phi(r)^p \leq C_2 s^n \phi(s)^p$ for every $r \leq s$.

These two conditions implies that \(\phi \) satisfies the doubling condition. Note that if \(\phi(t) = t^{-n/p} \), then \(L^p,\phi(\mu) = L^p(\mu) \) is the non-homogeneous Lebesgue space.

The study of the boundedness of the fractional integral operator \(I^\alpha \) on generalized Morrey spaces was initiated in [17, Theorem 3]. The following theorem presents the weak type inequalities for \(I^\alpha \) on generalized non-homogeneous Morrey spaces.

Theorem 1.1 [13, Theorem 2.4] Let \(1 \leq p < q < \infty \). Suppose that
\[
\inf_{r>0} \phi(r) = 0, \quad \sup_{r>0} \phi(r) = \infty,
\]
and there exist positive constants \(C' \) and \(C'' \) such that
\[
\int_r^\infty \phi(t)^p \frac{dt}{t} \leq C' \phi(r)^p \quad \text{and} \quad r^\alpha \phi(r) + \int_r^\infty t^{\alpha-1} \phi(t) dt \leq C'' \phi(r)^{p/q}
\]
for every \(r > 0 \). Then, there exists a constant \(C > 0 \) such that for any function \(f \in L^p,\phi(\mu) \) and any ball \(B(a,r) \subseteq \mathbb{R}^d \), we have
\[
\mu(\{ x \in B(a,r) : |I^\alpha f(x)| > \gamma \}) \leq C r^n \phi(r)^p \left(\frac{\|f\|_{L^p,\phi(\mu)}}{\gamma} \right)^q,
\]
for every \(\gamma > 0 \).

Remark: Note that we can obtain the weak type inequalities for \(I^\alpha \) on non-homogeneous Lebesgue spaces which are proved in [7, 8] by taking \(\phi(r) = r^{-\frac{n}{p}} \) and \(\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n} \) in Theorem 1.1. By substituting \(\frac{1}{q} = 1 - \frac{\alpha}{n-\lambda} \) for some \(\lambda \in [0, n - \alpha) \) to \(r^\alpha \phi(r) \leq C \phi(r)^{1/q} \), we have \(\int_r^\infty t^{\alpha-1} \phi(t) dt \leq C r^{\lambda + \alpha - n} \) for every \(r > 0 \), which is one of the hypotheses in the weak type inequalities for \(I^\alpha \) in [32].

The proof of Theorem 1.1 employs some inequalities involving the modified Hardy-Littlewood maximal operator \(M^n \) (see [16]), which is defined for any locally integrable function \(f \) by
\[
M^n f(x) = \sup_{r>0} \frac{1}{r^n} \int_{B(x,r)} |f(y)| d\mu(y)
\]
and the Chebyshev inequality which is presented in the following theorem:

Theorem 1.2 [26] Let \(E \) be a measurable subset of \(\mathbb{R}^d \). If \(f \) is an integrable function on \(E \), then for every \(\gamma > 0 \), we have
\[
\mu(\{ x \in E : |f(x)| > \gamma \}) \leq \frac{1}{\gamma} \int_E |f(x)| d\mu(x).
\]

One of the reasons why we are fascinated with the generalized fractional integral operators is that these operators appear naturally in the context of differential equations; see [9, Section 6.4] for a nice explanation in connection with the holomorphic calculus of operators and see [2, (4.3)] and [24, Lemma 2.5] for a detailed account that \((1 - \Delta)^{-\alpha/2} \) with \(\alpha > 0 \) satisfies the requirement of \(\rho \) in the present paper. In addition, investigating generalized Morrey spaces is not a mere quest to the abstract theory; it arises naturally in the context of Sobolev embedding. In [31], the following proposition is proved;
Proposition 1.3 [31, Theorem 5.1] Let $1 < p < \infty$ and $0 < \lambda < N$. Then there exists a positive constant $C_{p,\lambda}$ such that

$$
\int_B |f(x)|dx \leq C_{p,\lambda} |B|(1 + |B|)^{-\frac{1}{p}} \log \left(e + \frac{1}{|B|}\right) \| (1 - \Delta)^{\lambda/2} f \|_{L^p}\n$$

holds for all $f \in L^{p,\lambda}(\mathbb{R}^N)$ with $(1 - \Delta)^{\lambda/2} f \in L^{p,\lambda}(\mathbb{R}^N)$ and for all balls B, where $L^{p,\lambda}$ is the abbreviation of $L^{p,\psi}$ with $\psi(t) = t - \lambda$.

Later Proposition 1.3 is strengthened by [5, Example 5]. An example in [31] as well as the necessary and sufficient condition obtained in [5, Theorem 1.3] implicitly shows that the log-factor above is absolutely necessary.

In this paper, we shall prove the weak type inequalities for I_ρ which is a generalization of Theorem 1.1. In Section 2, we shall prove the weak type inequalities for I_ρ by using the Chebyshev inequality and some inequalities involving operator M^n. In Section 3, we shall prove a Hedberg type inequality on generalized non-homogeneous Morrey space by adapting the proof of a Hedberg type inequality on homogeneous setting in [5]. Through the weak type inequalities for M^n, we then prove the weak type inequalities for I_ρ on generalized non-homogeneous Morrey spaces. In Section 4, we extend our results to the singular integral operators defined in [21]. Finally, in Section 5, we prove the boundedness of I_ρ on generalized Orlicz-Morrey spaces. See [6, 29, 30] for related results.

Throughout the paper, C denotes a positive constant which is independent of the function f and the variable x, and may have different values from line to line. We also denote by C_k ($k \in \mathbb{N}$) fixed constants that satisfy certain conditions.

2 Weak Type Inequalities for I_ρ via the Chebyshev Inequality

Now, we give an inequality which is used in the proof of the weak type inequalities for I_ρ in the following lemma.

Lemma 2.1 Let $1 \leq p < q < \infty$. If ρ and ϕ satisfy

$$
\int_0^r \frac{\rho(t)}{t} dt \leq C\phi(r)^{\frac{p}{q} - 1} \quad (2.1)
$$

for every $r > 0$, then for any ball $B(x, R) \subseteq \mathbb{R}^d$ and every locally integrable function f, we have

$$
\int_{B(x, R)} \rho(|x - y|^2) |f(y)|d\mu(y) \leq CM^n f(x)\phi(R)^{\frac{p}{q} - 1}. \quad (2.2)
$$
Weak Type Inequalities for Integral Operators

Proof. For any ball $B(x, R) \subseteq \mathbb{R}^d$, let $I(x) = \int_{B(x, R)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| d\mu(y)$. By the dyadic decomposition of the ball $B(x, R)$ and the growth condition of ρ, we have

$$I(x) = \sum_{j=-\infty}^{-1} \int_{B(x, 2^{j+1}R) \setminus B(x, 2^jR)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| d\mu(y) \leq C \sum_{j=-\infty}^{-1} \frac{\rho^{
u}(2^{j+1}R)}{(2^{j}R)^n} \int_{B(x, 2^{j+1}R)} |f(y)| d\mu(y) \leq CM^n f(x) \sum_{j=-\infty}^{-1} \int_{k_{2^{j+1}}R} \frac{\rho(t)}{t} dt.$$

Then, we use the overlapping property (see [12, 25]) to obtain

$$\sum_{j=-\infty}^{-1} \int_{k_{2^{j+1}}R} \frac{\rho(t)}{t} dt = \sum_{j=-\infty}^{-1} \int_{0}^{k_{2}} \chi_{[k_{2}^{j+1}R, k_{2}^{j+1+1}R]}(t) \frac{\rho(t)}{t} dt = \int_{0}^{k_{2}} \left(\sum_{j=-\infty}^{-1} \chi_{[k_{2}^{j+1}R, k_{2}^{j+1+1}R]}(t) \right) \frac{\rho(t)}{t} dt \leq \left(1 + \log_2 \left(\frac{k_{2}}{k_{1}} \right) \right) \int_{0}^{k_{2}} \frac{\rho(t)}{t} dt.$$

If we use (2.1) and the doubling condition of ϕ, then we have

$$\sum_{j=-\infty}^{-1} \int_{k_{2^{j+1}}R} \frac{\rho(t)}{t} dt \leq C \phi(k_{2}R)^{\frac{p}{q} - 1} \leq C \phi(R)^{\frac{p}{q} - 1}.$$

Hence, $I(x) \leq CM^n f(x) \phi(R)^{\frac{p}{q} - 1}$. ■

By letting $f \equiv 1$ or $f \equiv \chi_{B(a, r)}$, we have the following:

Corollary 2.2 Let $1 \leq p < q < \infty$ and $B(x, R)$ be any ball in \mathbb{R}^d. If the functions ρ and ϕ satisfy the inequality (2.1), then

$$\int_{B(x, R)} \frac{\rho(|x-y|)}{|x-y|^n} d\mu(y) \leq C \phi(R)^{\frac{p}{q} - 1} \tag{2.3}$$

and for any ball $B(a, r) \subseteq \mathbb{R}^d$, we have

$$\int_{B(x, R)} \frac{\rho(|x-y|)}{|x-y|^n} \chi_{B(a, r)}(y) d\mu(y) \leq CM^n \chi_{B(a, r)}(x) \phi(R)^{\frac{p}{q} - 1}. \tag{2.4}$$

Remark: These two inequalities will be used later to prove one of our main theorems. The next lemma presents an inequality involving the modified Hardy-Littlewood maximal operator M^n. This inequality is an important part of the proof of the weak type inequalities for I_α in [13, 32]. See [16] for similar results.
Lemma 2.3 [13] Let $1 \leq p < \infty$. If ϕ satisfies $\int_r^\infty \frac{\dot{\phi}(t)^p}{t} \, dt \leq C \phi(r)^p$ for every $r > 0$, then for any function $f \in L^{p,\phi}(\mu)$ and any ball $B(a, r) \subseteq \mathbb{R}^d$, we have

$$\int_{\mathbb{R}^d} |f(y)|^p \, M^\phi_B(a, r)(y) \, d\mu(y) \leq C \, r^n \, \phi(r)^p \|f\|_{L^{p,\phi}(\mu)}^p. \quad (2.5)$$

With Theorem 1.2, Corollary 2.2, and Lemma 2.3, we are now ready to prove the weak type inequalities for I_p on generalized non-homogeneous Morrey spaces.

Theorem 2.4 [14] Let $1 \leq p < q < \infty$ and assume that $\sup_{r > 0} \phi(r) = \infty$. If ρ and ϕ satisfy

$$\int_r^\infty \frac{\dot{\phi}(t)^p}{t} \, dt \leq C \phi(r)^p \quad \text{and} \quad \phi(r) \int_0^r \frac{\rho(t)^p}{t} \, dt + \int_r^\infty \frac{\rho(t) \phi(t)^p}{t} \, dt \leq C \phi(r)^\frac{p}{q}$$

for every $r > 0$, then for any function $f \in L^{p,\phi}(\mu)$ and any ball $B(a, r) \subseteq \mathbb{R}^d$, we have

$$\mu(\{x \in B(a, r) : |I_\rho f(x)| > \gamma\}) \leq C \, r^n \, \phi(r)^p \left(\frac{\|f\|_{L^{p,\phi}(\mu)}}{\gamma} \right)^q,$$

for every $\gamma > 0$.

Proof. Let $B(a, r)$ be any ball in \mathbb{R}^d. For every $x \in B(a, r)$ and $R > 0$, let

$$I_1(x) = \int_{B(x, R)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, d\mu(y) \quad \text{and} \quad I_2(x) = \int_{\mathbb{R}^d \setminus B(x, R)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, d\mu(y).$$

For every positive real number γ, let $E_\gamma = \{x \in B(a, r) : |I_\rho f(x)| > \gamma\}$. Since $|I_\rho f(x)| \leq |I_1(x)| + |I_2(x)|$, we have

$$\mu(E_\gamma) \leq \mu \left(\left\{ x \in B(a, r) : |I_1(x)| > \frac{\gamma}{2} \right\} \right) + \mu \left(\left\{ x \in B(a, r) : |I_2(x)| > \frac{\gamma}{2} \right\} \right).$$

By the dyadic decomposition of $\mathbb{R}^d \setminus B(x, R)$ and the growth condition of ρ, we have

$$|I_2(x)| \leq \sum_{j=0}^\infty \int_{B(x, 2^{j+1}R) \setminus B(x, 2^jR)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, d\mu(y)$$

$$\leq C \sum_{j=0}^\infty \rho^*(2^{j+1}R) \left(\frac{1}{(2^{j+1}R)^n} \int_{B(x, 2^{j+1}R)} |f(y)|^p \, d\mu(y) \right)^{1/p} \left(\mu(B(x, 2^{j+1}R)) \right)^{1-\frac{1}{p}}$$

$$\leq C \sum_{j=0}^\infty \rho^*(2^{j+1}R) \left(\frac{1}{(2^{j+1}R)^n} \int_{B(x, 2^{j+1}R)} |f(y)|^p \, d\mu(y) \right)^{1/p}$$

$$\leq C \|f\|_{L^{p,\phi}(\mu)} \sum_{j=0}^\infty \rho^*(2^{j+1}R) \phi(2^{j+1}R).$$
By using the doubling condition of \(\phi \) and the overlapping property, we have

\[
\sum_{j=0}^{\infty} \rho^* (2^{j+1} R) \phi(2^{j+1} R) = \sum_{j=0}^{\infty} \phi(2^{j+1} R) \int_{2^j R}^{2^{j+1} R} \frac{\rho(t) \phi(t)}{t} dt \\
\leq C \sum_{j=0}^{\infty} \int_{2^j R}^{2^{j+1} R} \chi_{[2^j R, 2^{j+1} R]}(t) \frac{\rho(t) \phi(t)}{t} dt \\
= C \int_{2^j R}^{\infty} \left(\sum_{j=0}^{\infty} \chi_{[2^j R, 2^{j+1} R]}(t) \right) \frac{\rho(t) \phi(t)}{t} dt \\
\leq C \left(1 + \log_2 \left(\frac{k_2}{k_1} \right) \right) \int_{2^j R}^{\infty} \frac{\rho(t) \phi(t)}{t} dt.
\]

Now we invoke the integral assumption on \(\rho \cdot \phi; \)

\[
\sum_{j=0}^{\infty} \rho^* (2^{j+1} R) \phi(2^{j+1} R) \leq C \phi(2k_1 R)^{p/q} \leq C \phi(R)^{p/q}.
\]

Hence,

\[
|I_2(x)| \leq C_3 \|f\|_{L^{p,\phi}(\mu)} \phi(R)^{p/q} \quad (2.6)
\]

Let \(\tilde{\gamma} = \left(\frac{\gamma}{2C_3 \|f\|_{L^{p,\phi}(\mu)}} \right)^{q/p} \). Remark that \(\int_1^{\infty} \frac{\phi(t)^p}{t} dt \leq C \phi(1)^p \) implies that \(\inf_{r>0} \phi(r) = 0 \). Otherwise,

\[
\infty = \inf_{r>0} \phi(r)^p \int_1^{\infty} \frac{1}{t} dt \leq \int_1^{\infty} \frac{\phi(t)^p}{t} dt \leq C \phi(1)^p,
\]

which is impossible. Now, from \(\inf_{r>0} \phi(r) = 0 < \tilde{\gamma} < \infty = \sup_{r>0} \phi(r) \), we can find \(k_0 \in \mathbb{Z} \) such that for \(R_1 = 2^{k_0} \) and \(R_2 = 2^{k_0-1} \), we have

\[
\phi(R_1) \leq \tilde{\gamma} \leq \phi(R_2).
\]

Since \(\frac{R_1}{R_2} = 2 \), there exists \(C > 0 \) such that \(\phi(R_2) \leq C \phi(R_1) \). Hence,

\[
\phi(R_1) \leq \tilde{\gamma} \leq C \phi(R_1). \quad (2.7)
\]

Taking \(R = R_1 \), we obtain

\[
|I_2(x)| \leq C_3 \|f\|_{L^{p,\phi}(\mu)} \phi(R_1)^{p/q} \leq C_3 \|f\|_{L^{p,\phi}(\mu)} \tilde{\gamma}^{p/q} \leq \frac{\gamma}{2}.
\]

Consequently,

\[
\mu(E_{\gamma}) \leq \mu(\{ x \in B(a, r) : |I_1(x)| > \gamma/2 \}).
\]

We combine Hölder’s inequality and the inequality (2.3) to obtain

\[
|I_1(x)| \leq \left(\int_{B(x, R_1)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)|^p \, d\mu(y) \right)^{\frac{1}{p}} \left(\int_{B(x, R_1)} \frac{\rho(|x-y|)}{|x-y|^n} \, d\mu(y) \right)^{1-\frac{1}{p}} \\
\leq C_4 \phi(R_1)^{\left(\frac{n}{q} - 1\right)(1-\frac{1}{p})} \left(\int_{B(x, R_1)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)|^p \, d\mu(y) \right)^{\frac{1}{p}}.
\]
Finally, by using the last inequality and the Chebyshev inequality, we get

\[
\begin{align*}
\mu(E_\gamma) &\leq \mu \left\{ x \in B(a, r) : \int_{B(x, R_1)} \rho(|x-y|) \frac{|f(y)|^p}{|x-y|^n} dm_\mu(y) > \frac{(\gamma/2)^p}{C^p \phi(R_1) (\frac{\pi}{n-1})^{(p-1)}} \right\} \\
&\leq \frac{2pC^p \phi(R_1) (\frac{\pi}{n-1})^{(p-1)}}{\gamma^p} \int_{B(a, r)} \int_{B(x, R_1)} \rho(|x-y|) \frac{|f(y)|^p}{|x-y|^n} dm_\mu(y) dm_\mu(x) \\
&= \frac{C}{\gamma^p} \phi(R_1) (\frac{\pi}{n-1})^{(p-1)} \int_{\mathbb{R}^d} \int_{B(x, R_1)} \rho(|x-y|) \frac{|f(y)|^p}{|x-y|^n} \chi_{B(a, r)}(x) dm_\mu(y) dm_\mu(x)
\end{align*}
\]

By virtue of the inequalities (2.4), (2.5), and (2.7) as well as the definition of \(\tilde{\gamma} \), we get

\[
\begin{align*}
\mu(E_\gamma) &\leq \frac{C}{\gamma^p} \phi(R_1) (\frac{n-1}{\pi})^{(p-1)} \int_{\mathbb{R}^d} |f(y)|^p \int_{B(y, R_1)} \rho(|x-y|) \frac{1}{|x-y|^n} \chi_{B(a, r)}(x) dm_\mu(x) dm_\mu(y) \\
&\leq \frac{C}{\gamma^p} \phi(R_1) (\frac{n-1}{\pi})^{p} \int_{\mathbb{R}^d} |f(y)|^p M^n \chi_{B(a, r)}(y) dm_\mu(y) \\
&\leq \frac{C}{\gamma^p} \tilde{\gamma} \gamma^2 |r|^p \phi(r) \left\| f \right\|_{L^p, \phi(\mu)}^p \\
&\leq C |r|^p \phi(r) \left(\frac{\left\| f \right\|_{L^p, \phi(\mu)}}{\gamma} \right)^q,
\end{align*}
\]

as desired. \(\blacksquare \)

Remark: Note that \(\rho(t) = t^\alpha \) where \(0 < \alpha < n \) satisfies the condition of Theorem 2.4 and for this \(\rho \), we obtain the weak type inequalities for \(I_\alpha \) in Theorem 1.1.

3 Weak Type Inequalities for \(I_\rho \) via a Hedberg Type Inequality and Weak Type Inequalities for \(M^n \)

In this section, we shall prove weak type inequalities for \(I_\rho \) using a different technique, namely via a Hedberg type inequality and weak type inequalities for \(M^n \). It turns out that some hypotheses can be removed. The Hedberg type inequality is presented in the following proposition:

Proposition 3.1 \([5, 14]\) Let \(1 \leq p < q < \infty \). If \(\rho \) and \(\phi \) satisfy

\[
\phi(r) \int_0^r \frac{\rho(t)}{t} dt + \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \leq C \phi(r)^{\frac{p}{q}}
\]

for every \(r > 0 \), then for every \(f \in L^{p, \phi(\mu)} \) and \(x \in \mathbb{R}^d \), we have

\[
|I_\rho f(x)| \leq C \left(M^n f(x)^{\frac{p}{q}} \left\| f \right\|_{L^{p, \phi(\mu)}}^{1-\frac{p}{q}} + \left\| f \right\|_{L^{p, \phi(\mu)}} \inf_{r > 0} \phi(r)^{\frac{p}{q}} \right).
\]
Proof. We adapt the proof of a Hedberg type inequality on generalized Morrey space in [5]. For every \(x \in \mathbb{R}^d \) and \(R > 0 \), write \(I_\rho f(x) = I_1(x) + I_2(x) \) where \(I_1(x) \) and \(I_2(x) \) are defined in the proof of Theorem 2.4. By using the inequalities (2.2) and (2.6), we get

\[
|I_\rho f(x)| \leq C \left(M^n f(x) \phi(R)^{\frac{p}{p-1}} + \|f\|_{L^p,\phi(\mu)} \phi(R)^{\frac{p}{p}} \right). \tag{3.3}
\]

Next, we separate the proof into the following two cases:

First case: \(M^n f(x) \leq 2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)} \inf_{r>0} \phi(r) \). In this case, we have

\[
|I_\rho f(x)| \leq C \left(2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)} \phi(R)^{\frac{p}{p-1}} + \|f\|_{L^p,\phi(\mu)} \phi(R)^{\frac{p}{p}} \right)
\]

\[
\leq C \left(\|f\|_{L^p,\phi(\mu)} \phi(R)^{\frac{p}{p}},
\right.
\]

for every \(R > 0 \). Hence, \(|I_\rho f(x)| \leq C \|f\|_{L^p,\phi(\mu)} \inf_{r>0} \phi(r) \).

Second case: \(M^n f(x) > 2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)} \inf_{r>0} \phi(r) \). We use Hölder’s inequality, the growth condition of \(\mu \), and the definition of \(\|f\|_{L^p,\phi(\mu)} \) to obtain

\[
\frac{1}{R^n} \int_{B(x,R)} |f(y)| d\mu(y) \leq \frac{1}{R^n} \left(\int_{B(x,R)} |f(y)|^p d\mu(y) \right)^{\frac{1}{p}} \mu(B(x, R))^{1-\frac{1}{p}}
\]

\[
\leq C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)} \phi(R)
\]

for every \(R > 0 \). Hence, \(M^n f(x) \leq C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)} \sup_{r>0} \phi(r) \). Since \(\sup_{r>0} \phi(r) > 0 \), we have

\[
\inf_{r>0} \phi(r) < \frac{M^n f(x)}{2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)}} \leq \frac{1}{2} \sup_{r>0} \phi(r) < \sup_{r>0} \phi(r).
\]

Thus, there exists \(j_0 \in \mathbb{Z} \) such that

\[
\phi(R_1) \leq \frac{M^n f(x)}{2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)}} \leq \phi(R_2)
\]

for \(R_1 = 2^{j_0} \) and \(R_2 = 2^{j_0-1} \). Since \(\frac{R_1}{R_2} = 2 \), there exists \(C > 0 \) such that

\[
\phi(R_1) \leq \frac{M^n f(x)}{2C_\mu R^{-\frac{1}{p}} \|f\|_{L^p,\phi(\mu)}} \leq C \phi(R_1). \tag{3.4}
\]
By choosing $R = R_1$ in the inequality (3.3) and using the inequality (3.4), we have
\begin{align*}
|I_p f(x)| &\leq C \left(2C_{\mu}^{1-\frac{1}{p}} \|f\|_{L^p,\phi}(\mu)C\phi(R_1)\right) \phi(R_1)^{\frac{p}{q}-1} + \|f\|_{L^p,\phi}(\mu)\phi(R_1)^{\frac{p}{q}} \\
&\leq C\phi(R_1)^{\frac{p}{q}} \|f\|_{L^p,\phi}(\mu) \\
&\leq C \left(\frac{M^n f(x)}{2C_{\mu}^{1-\frac{1}{p}} \|f\|_{L^p,\phi}(\mu)}\right)^{\frac{p}{q}} \|f\|_{L^p,\phi}(\mu) \\
&\leq CM^n f(x)^{\frac{p}{q}} \|f\|_{L^p,\phi}(\mu)^{1-\frac{p}{q}}.
\end{align*}

From these two cases, we obtain the inequality (3.2). \hfill \blacksquare

Sihwaningrum et al. [32] proved the weak type inequalities for M^n on generalized non-homogeneous Morrey space by assuming that ϕ^p satisfies the integral condition, that is, $\int_r^{\infty} \frac{\phi^p(t)}{t} dt \leq C\phi(r)^p$ for every $r > 0$. In [32], the weak type inequalities for I_α are also proved by using the weak type inequalities for M^n. In this paper, we remove the integral condition of ϕ^p in the hypothesis of our proposition below. See [27, Theorem 2.3] and [19, Theorem 2.3] for such attempts.

Proposition 3.2 [14] Let $1 \leq p < \infty$, then there exists a constant $C > 0$ such that for any function $f \in L^p,\phi(\mu)$ and any ball $B(a, r) \subseteq \mathbb{R}^d$, we have
\begin{equation}
\mu\{x \in B(a, r) : M^n f(x) > \gamma\} \leq Cr^n \phi(r)^p \left(\frac{\|f\|_{L^p,\phi}(\mu)}{\gamma}\right)^p,
\end{equation}
for every $\gamma > 0$.

When $p > 1$, we have the strong boundedness; see [17, Theorem 1] and [28, Lemma 2.4] for the Lebesgue case and see [1, Theorem 4.3] for the strong $L^p,\phi_1(\mu)$ to $L^p,\phi_2(\mu)$ result and the weak $L^p,\phi_1(\mu)$ to $L^p,\phi_2(\mu)$ result with μ equal to the Lebesgue measure.

Proof. The proof is similar to that of strong boundedness of maximal operator on generalized non-homogeneous Morrey spaces which is discussed in [28]. The difference is that in the final step we use the Chebyshev inequality, as we shall see below. Consider the ball $B(a, r) \subseteq \mathbb{R}^d$. Let $x \in B(a, r)$ and γ be any positive real number. For $y \in \mathbb{R}^d$, define $f_1(y) = \chi_{B(a, 2r)}(y)f(y)$ and $f_2(y) = f(y) - f_1(y)$. Note that
\begin{align*}
M^n f_2(x) &= \sup_{R > 0} \frac{1}{R^n} \int_{B(x, R)} (1 - \chi_{B(a, 2r)}(y))|f(y)|d\mu(y).
\end{align*}
Since $B(x, R) \subseteq B(a, 2r)$ for every $R < r$, we have
\begin{align*}
\frac{1}{R^n} \int_{B(x, R)} (1 - \chi_{B(a, 2r)}(y))|f(y)|d\mu(y) &= 0
\end{align*}
for every $R < r$. Hence,

$$M^n f_2(x) \leq \sup_{R > r} \frac{1}{R^n} \int_{B(x, R)} |f(y)|d\mu(y).$$

Observe that for every $R > r$, we have

$$\frac{1}{\phi(r) R^n} \int_{B(x, R)} |f(y)|d\mu(y) \leq \frac{C}{\phi(R) R^n} \left(\int_{B(x, R)} |f(y)|^p d\mu(y) \right)^{\frac{1}{p}} \left(\mu(B(x, R)) \right)^{1 - \frac{1}{p}}$$

$$\leq \frac{C}{\phi(R)} \left(\frac{1}{R^n} \int_{B(x, R)} |f(y)|^p d\mu(y) \right)^{\frac{1}{p}}$$

$$\leq C \|f\|_{L^p, \phi(\mu)}.$$

Thus,

$$M^n f_2(x) \leq C \phi(r) \|f\|_{L^p, \phi(\mu)}. \quad (3.6)$$

Since $M^n f(x) \leq M^n f_1(x) + M^n f_2(x)$, we have

$$\mu \{ x \in B(a, r) : M^n f(x) > \gamma \}$$

$$\leq \mu \{ x \in B(a, r) : M^n f_1(x) > \frac{\gamma}{2} \} + \mu \{ x \in B(a, r) : M^n f_2(x) > \frac{\gamma}{2} \}$$

For the first term, we use the weak type inequalities for M^n on the nonhomogeneous Lebesgue space $L^p(\mu)$ (see [8]) to obtain

$$\mu \{ x \in B(a, r) : M^n f_1(x) > \frac{\gamma}{2} \} \leq C \left(\frac{\|f_1\|_{L^p(\mu)}}{\gamma} \right)^p$$

$$\leq \frac{C}{\gamma^p} \int_{B(a, 2r)} |f(y)|^p d\mu(y)$$

$$\leq \frac{C}{\gamma^p} \phi(2r)^p (2r)^n \|f\|_{L^p, \phi(\mu)}^p$$

$$\leq C r^n \phi(r)^p \left(\frac{\|f\|_{L^p, \phi(\mu)}}{\gamma} \right)^p.$$

Meanwhile, for the second term, by using the Chebyshev inequality and the inequality (3.6), we have

$$\mu \{ x \in B(a, r) : M^n f_2(x) > \frac{\gamma}{2} \} = \mu \{ x \in B(a, r) : M^n f_2(x)^p > \left(\frac{\gamma}{2} \right)^p \}$$

$$\leq \frac{2^p}{\gamma^p} \int_{B(a, r)} M^n f_2(x)^p d\mu(x)$$

$$\leq \frac{2^p}{\gamma^p} \int_{B(a, r)} C^n \phi(r)^p \|f\|_{L^p, \phi(\mu)}^p d\mu(x)$$

$$\leq \frac{2^p}{\gamma^p} C^n \phi(r)^p \|f\|_{L^p, \phi(\mu)}^p \mu(B(a, r))$$

$$\leq C r^n \phi(r)^p \left(\frac{\|f\|_{L^p, \phi(\mu)}}{\gamma} \right)^p.$$
Finally, by combining these two estimates we obtain the inequality (3.5).

With Propositions 3.1 and 3.2, we are now ready to prove the weak type inequalities for I_ρ on generalized non-homogeneous Morrey spaces.

Theorem 3.3 [14] Let $1 \leq p < q < \infty$. If ρ and ϕ satisfy the inequality (3.1), then for any function $f \in L^{p,\phi}(\mu)$ and any ball $B(a, r) \subseteq \mathbb{R}^d$, we have

$$
\mu \left(\{ x \in B(a, r) : |I_\rho f(x)| > \gamma \} \right) \leq C r^n \phi(r)^p \left(\frac{\|I_\rho f\|_{L^{p,\phi}(\mu)}}{\gamma} \right)^q,
$$

for every $\gamma > 0$.

Proof. This proof is adapted from [5]. We replace γ by 2γ. Consider the ball $B(a, r) \subseteq \mathbb{R}^d$. By applying Proposition 3.1, we have

$$
\mu \left(\{ x \in B(a, r) : |I_\rho f(x)| > 2\gamma \} \right) \leq \mu \left(\{ x \in B(a, r) : CM^n f(x)^{\frac{p}{q}} \|f\|_{L^{p,\phi}(\mu)}^{1-\frac{p}{q}} + \|f\|_{L^{p,\phi}(\mu)} \inf_{r > 0} \phi(r)^{\frac{p}{q}} > 2\gamma \} \right)
$$

$$
\leq \mu \left(\{ x \in B(a, r) : CM^n f(x)^{\frac{p}{q}} \|f\|_{L^{p,\phi}(\mu)}^{1-\frac{p}{q}} > \gamma \} \right) + \mu \left(\{ x \in B(a, r) : C \|f\|_{L^{p,\phi}(\mu)} \inf_{r > 0} \phi(r)^{\frac{p}{q}} > \gamma \} \right).
$$

Observe that the second term in the most right-hand side of the above inequality vanishes, when

$$
C \|f\|_{L^{p,\phi}(\mu)} \inf_{r > 0} \phi(r)^{\frac{p}{q}} \leq \gamma.
$$

So, to estimate the term, we can suppose

$$
C \|f\|_{L^{p,\phi}(\mu)} \inf_{r > 0} \phi(r)^{\frac{p}{q}} > \gamma.
$$

With this in mind, we calculate;

$$
\mu \left(\{ x \in B(a, r) : C \|f\|_{L^{p,\phi}(\mu)} \inf_{r > 0} \phi(r)^{\frac{p}{q}} > \gamma \} = \mu(B(a, r)) \right.
$$

$$
\leq C r^n \phi(r)^p \left(\frac{\|f\|_{L^{p,\phi}(\mu)}}{\gamma} \right)^q.
$$

Meanwhile, by using Proposition 3.2, we have

$$
\mu \left(\{ x \in B(a, r) : CM^n f(x)^{\frac{p}{q}} \|f\|_{L^{p,\phi}(\mu)}^{1-\frac{p}{q}} > \gamma \} \right)
$$

$$
\leq \mu \left(\{ x \in B(a, r) : M^n f(x) > \left(\frac{\gamma}{C \|f\|_{L^{p,\phi}(\mu)}} \right)^{-\frac{p}{q}} \} \right)
$$

$$
\leq C r^n \phi(r)^p \|f\|_{L^{p,\phi}(\mu)}^p \left(\frac{\gamma}{C \|f\|_{L^{p,\phi}(\mu)}} \right)^{-q}
$$

$$
\leq C r^n \phi(r)^p \left(\frac{\|f\|_{L^{p,\phi}(\mu)}}{\gamma} \right)^q.
$$
By summing the two previous estimates, we get the desired inequality. ■

Remarks:

(i) Note that the hypotheses \(\int_r^\infty \phi(t)^p \frac{dt}{t} \leq C\phi(r)^p \) in Theorem 2.4 is not included in Theorem 3.3, since we can prove the weak type inequalities for \(M^n \) without this condition.

(ii) The condition on \(\phi \), namely \(\inf_{r>0} \phi(r) = 0 \) and \(\sup_{r>0} \phi(r) = \infty \), is not included in the hypotheses in Theorem 3.3. However, we have to use the weak type inequalities for \(M^n \) on generalized non-homogeneous Morrey spaces and a Hedberg type inequality for \(I_\rho \) in the proof of Theorem 3.3.

4 Boundedness of singular integral operators

Proposition 3.2 carries over to the singular integral operator whose definition is given in [21]. Recall that the singular integral operator \(T \) is a bounded linear operator on \(L^2(\mu) \) for which there exists a function \(K \) that satisfies three properties listed below:

(4.a) There exists \(C > 0 \) such that \(|K(x, y)| \leq \frac{C}{|x-y|^n} \) for all \(x \neq y \).

(4.b) There exist \(\varepsilon > 0 \) and \(C > 0 \) such that

\[
|K(x, y) - K(z, y)| + |K(y, x) - K(y, z)| \leq C \frac{|x - z|^{\varepsilon}}{|x - y|^{n+\varepsilon}},
\]

if \(|x - y| \geq 2|x - z| \) with \(x \neq y \).

(4.c) If \(f \) is a bounded \(\mu \)-measurable function with a compact support, then we have

\[
Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) d\mu(y) \text{ for all } x \notin \text{supp}(f).
\]

As for this singular integral operator \(T \), the following result is due to Nazarov, Treil, and Volberg.

Proposition 4.1 [21, 22] The singular operator \(T \) is bounded on \(L^p(\mu) \) for \(1 < p < \infty \). Moreover, there exists a constant \(C > 0 \) such that

\[
\mu\{x \in \mathbb{R}^d : |Tf(x)| > \gamma\} \leq C \frac{\|f\|_{L^1(\mu)}}{\gamma}
\]

for every \(f \in L^1(\mu) \) and every \(\gamma > 0 \).
Theorem 4.2 Let T be a singular integral operator. Let $1 \leq p < \infty$. In addition to the doubling condition, assume that
\[
\int_{r}^{\infty} \frac{\phi(t)}{t} \, dt \leq C\phi(r)
\]
for every $r > 0$. Then there exists a constant $C > 0$ such that for any function $f \in L^{p,\phi}(\mu)$ and any ball $B(a, r) \subseteq \mathbb{R}^d$, we have
\[
\mu\{x \in B(a, r) : |Tf(x)| > \gamma\} \leq C r^n \phi(r) \left(\frac{\|f\|_{L^{p,\phi}(\mu)}}{\gamma} \right)^p,
\]
for every $\gamma > 0$.

Proof. The proof is a modification of that of Proposition 3.2. We decompose $f = f_1 + f_2$ as before. The treatment of f_1 is the same as that in Proposition 3.2, but by using the weak type inequality for T in Proposition 4.1. We need to take care of f_2. By the condition (4.a), Hölder’s inequality, and the growth condition of μ, we have
\[
|Tf_2(x)| \leq C \int_{\mathbb{R}^d \setminus B(x, r)} \frac{|f(y)|}{|x - y|^n} \, d\mu(y)
\]

\[
\leq C \sum_{j=0}^{\infty} \frac{1}{(2^j r)^n} \int_{B(x, 2^{j+1}r)} |f(y)| \, d\mu(y)
\]

\[
\leq C \sum_{j=0}^{\infty} \frac{1}{(2^j r)^n} \left(\int_{B(x, 2^{j+1}r)} |f(y)|^p \, d\mu(y) \right)^{\frac{1}{p}} \left(\mu(B(x, 2^{j+1}r)) \right)^{1 - \frac{1}{p}}
\]

\[
\leq C \sum_{j=0}^{\infty} \phi(2^{j+1}r) \|f\|_{L^{p,\phi}(\mu)}
\]

\[
\leq C \|f\|_{L^{p,\phi}(\mu)} \int_{r}^{\infty} \frac{\phi(t)}{t} \, dt.
\]

If we use our integrability assumption, then we have a pointwise estimate
\[
|Tf_2(x)| \leq C \phi(r) \|f\|_{L^{p,\phi}(\mu)}.
\]

So, we are done. \(\blacksquare \)

Remark: If we define the generalized weak Morrey space of non-homogeneous type $wL^{p,\phi}(\mu)$ to be the set of all μ-measurable functions f such that
\[
\|f\|_{wL^{p,\phi}(\mu)} := \sup_{B(a, r) \subseteq \mathbb{R}^d, \gamma > 0} \gamma^{1/p} \left(\mu\{x \in B(a, r) : |f(x)| > \gamma\} \right)^{1/p} < \infty,
\]
then the inequality (4.1) amounts to the boundedness of T from $L^{p,\phi}(\mu)$ to $wL^{p,\phi}(\mu)$. Similarly, our previous results can be translated into this language. In the following section, we shall use these notations for convenience.
5 Generalized Orlicz-Morrey spaces

Our results above can be carried over to generalized Orlicz-Morrey spaces. We first formulate our main results and then prove them later in Subsection 5.1–5.3.

Recall that \(\Phi : [0, \infty) \rightarrow [0, \infty) \) is a Young function, if \(\Phi \) is bijective and convex. We define the \(\Phi \)-average of \(f \) over a ball \(B(a, r) \) as follows:

\[
\|f\|_{\Phi, B(a, r)} = \inf \left\{ \lambda > 0 : \frac{1}{r^n} \int_{B(a, r)} \Phi \left(\frac{|f(y)|}{\lambda} \right) d\mu(y) \leq 1 \right\}.
\]

The generalized Orlicz-Morrey space \(L^{\Phi, \phi}(\mu) = L^{\Phi, \phi}(\mathbb{R}^d, \mu) \) is the set of all \(f \in L^1_{\text{loc}}(\mu) \) for which the norm

\[
\|f\|_{L^{\Phi, \phi}(\mu)} = \sup_{B(a, r) \subseteq \mathbb{R}^d} \frac{1}{\phi(r)} \|f\|_{\Phi, B(a, r)}
\]

is finite. Note that if \(\Phi(t) = t^p \), then \(L^{\Phi, \phi}(\mu) = L^p, \phi(\mu) \). About the structure of this function space, we have the following:

Theorem 5.1 Let \(\Phi : [0, \infty) \rightarrow [0, \infty) \) be a Young function and let \(\phi \) satisfy the two conditions (1.a) and (1.b) as usual. Then \(L^{\Phi, \phi}(\mu) \) is a Banach space.

We define the generalized weak Orlicz-Morrey spaces as follows: For a Young function \(\Phi \), the generalized weak Orlicz-Morrey space \(wL^{\Phi, \phi}(\mu) = wL^{\Phi, \phi}(\mathbb{R}^d, \mu) \) is the set of all \(\mu \)-measurable functions \(f \) for which the norm \(\|f\|_{wL^{\Phi, \phi}(\mu)} = \sup_{B(a, r) \subseteq \mathbb{R}^d, \gamma > 0} \frac{\gamma}{\phi(r)} \| \chi_{\{|f| > \gamma\}} \|_{\Phi, B(a, r)} \) is finite. Write \(wL^{p, \phi}(\mu) = wL^{\Phi, \phi}(\mu) \) when \(\Phi(t) = t^p \). It is not so hard to prove

\[
\|f\|_{wL^{\Phi, \phi}(\mu)} \leq \|f\|_{L^{\Phi, \phi}(\mu)}
\]

for all \(\mu \)-measurable functions \(f \) from the inequality

\[
\gamma \chi_{\{|f| > \gamma\}} \leq |f|.
\]

By taking \(f(x) = \frac{1}{|x|} \chi_{[-1,1]}(x) \), \(\phi(t) = \frac{1}{t} \log(3 + t) \), and \(\mu \) is the Lebesgue measure on \(\mathbb{R} \), we see that \(f \in wL^{1, \phi}(\mathbb{R}, \mu) \setminus L^{1, \phi}(\mathbb{R}, \mu) \), showing that \(wL^{1, \phi}(\mathbb{R}, \mu) \) is a proper superset of \(L^{1, \phi}(\mathbb{R}, \mu) \).

Theorem 5.2 Let \(\Phi : [0, \infty) \rightarrow [0, \infty) \) be a Young function and let \(\phi \) satisfy the two conditions (1.a) and (1.b) as usual. Then \(wL^{\Phi, \phi}(\mu) \) is a quasi-Banach space. More precisely,

1. \(\|f\|_{wL^{\Phi, \phi}(\mu)} = 0 \) if and only if \(f = 0 \).
2. \(\|cf\|_{wL^{\Phi, \phi}(\mu)} = |c| \|f\|_{wL^{\Phi, \phi}(\mu)} \) for all \(c \in \mathbb{C} \) and \(f \in wL^{\Phi, \phi}(\mu) \).
3. If \(\{f_k\}_{k=1}^{\infty} \) is a sequence in \(wL^{\Phi,\phi}(\mu) \) such that
\[
\lim_{k_1,k_2 \to \infty} \|f_{k_1} - f_{k_2}\|_{wL^{\Phi,\phi}(\mu)} = 0.
\]
Then there exists \(g \in wL^{\Phi,\phi}(\mu) \) such that
\[
\lim_{k \to \infty} \|g - f_k\|_{wL^{\Phi,\phi}(\mu)} = 0.
\]

We prove the following boundedness result on generalized Orlicz-Morrey spaces.

Theorem 5.3 Let \(\Phi : [0, \infty) \to [0, \infty) \) be a Young function and let \(\phi \) satisfy the two conditions (1.a) and (1.b) as usual. Then the maximal operator \(M \) is bounded from \(L^{\Phi,\phi}(\mu) \) to \(wL^{\Phi,\phi}(\mu) \). If we assume
\[
\int_{R}^{\infty} \frac{\phi(t)}{t} \, dt \leq C\phi(R) \quad (R > 0),
\]
and that \(\Phi \) satisfies the doubling condition, then the singular integral operator \(T \) is bounded from \(L^{\Phi,\phi}(\mu) \) to \(wL^{\Phi,\phi}(\mu) \).

Theorem 5.4 Let \(\rho : (0, \infty) \to (0, \infty) \) and, for some \(b \in (0, 1] \), \(\phi : (0, \infty) \to (0, \infty) \) satisfy
\[
\phi(r) \int_{0}^{r} \frac{\rho(t)}{t} \, dt + \int_{0}^{r} \frac{\phi(t)\rho(t)}{t} \, dt \leq C\phi(r)^b
\]
for every \(r > 0 \). Suppose that \(\Phi : [0, \infty) \to [0, \infty) \) is a Young function with the doubling condition. Set
\[
\psi(t) = \phi(t)^b \quad \text{and} \quad \Psi(t) = \Phi(t^{1/b}), \quad t \in [0, \infty).
\]
Then
\[
\|I_\rho f\|_{wL^{\psi,\psi}(\mu)} \leq C\|f\|_{L^{\Phi,\Phi}(\mu)}.
\]

5.1 Proof of Theorems 5.1 and 5.2

We start with a lemma.

Lemma 5.5 Let \(\Phi : [0, \infty) \to [0, \infty) \) be a Young function with the doubling property;
\[
\Phi(2t) \leq C\Phi(t), \quad t \in [0, \infty).
\]
For \(\mu \)-measurable functions \(f \) and \(g \) and a ball \(B(a,r) \), we have
\[
\|f + g\|_{\Phi,B(a,r)} \leq \|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}.
\]
Proof. If \(f = 0 \) \(\mu \)-a.e. or \(g = 0 \) \(\mu \)-a.e., then we have equality trivially; assume otherwise. Then, by virtue of the convexity, we have

\[
\frac{1}{r^n} \int_{B(a,r)} \Phi \left(\frac{|f(x) + g(x)|}{\|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}} \right) \, d\mu(x)
\]

\[
\leq \frac{\|f\|_{\Phi,B(a,r)}}{\|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}} \times \frac{1}{r^n} \int_{B(a,r)} \Phi \left(\frac{|f(x)|}{\|f\|_{\Phi,B(a,r)}} \right) \, d\mu(x)
\]

\[
+ \frac{\|g\|_{\Phi,B(a,r)}}{\|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}} \times \frac{1}{r^n} \int_{B(a,r)} \Phi \left(\frac{|g(x)|}{\|g\|_{\Phi,B(a,r)}} \right) \, d\mu(x)
\]

\[
\leq \frac{\|f\|_{\Phi,B(a,r)}}{\|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}} + \frac{\|g\|_{\Phi,B(a,r)}}{\|f\|_{\Phi,B(a,r)} + \|g\|_{\Phi,B(a,r)}} = 1.
\]

From the definition of the quantity \(\|f + g\|_{\Phi,B(a,r)} \), we obtain the inequality.

Lemma 5.6 If \(\Phi : [0, \infty) \to [0, \infty) \) is a Young function, then

\[
\frac{1}{r^n} \int_{B(a,r)} |f(y)| \, d\mu(y) \leq C\|f\|_{\Phi,B(a,r)}
\]

for any ball \(B(a,r) \) and \(\mu \)-measurable function \(f \).

Proof. A normalization allows us to assume that \(\|f\|_{\Phi,B(a,r)} = 1 \); our target will be to prove

\[
\frac{1}{r^n} \int_{B(a,r)} |f(y)| \, d\mu(y) \leq C
\]

In view of the growth condition, we may suppose that \(|f| \) assumes its value in \(\{0\} \cup [1, \infty) \). Since \(\Phi \) is a Young function, we have

\[
\Phi(t) \geq \Phi(1)t, \quad t \in \{0\} \cup [1, \infty).
\]

Therefore,

\[
\Phi(1) \frac{1}{r^n} \int_{B(a,r)} |f(y)| \, d\mu(y) \leq \frac{1}{r^n} \int_{B(a,r)} \Phi(|f(y)|) \, d\mu(y)
\]

\[
= \lim_{\varepsilon \downarrow 0} \frac{1}{r^n} \int_{B(a,r)} \Phi \left(\frac{|f(y)|}{\|f\|_{\Phi,B(a,r)} + \varepsilon} \right) \, d\mu(y)
\]

\[
\leq 1.
\]

So, we are done.

Now we are ready for the proof of Theorem 5.1.

Proof. (of Theorem 5.1) In view of Lemma 5.5, \(L^{\Phi,\phi}(\mu) \) is a normed space. So, we need to prove the completeness. To this end, we choose a sequence \(\{f_k\}_{k=1}^{\infty} \) of \(\mu \)-measurable function such that

\[
\sum_{k=1}^{\infty} \|f_k\|_{L^{\Phi,\phi}(\mu)} < \infty.
\]
Denote by O the origin. Then we have
\[
\sum_{k=1}^{\infty} \frac{1}{\phi(L)L^n} \|f_k\|_{L^1(B(O,L),\mu)} \leq C \sum_{k=1}^{\infty} \|f_k\|_{L^{\Phi,\phi}(B(O,L),\mu)} < \infty
\]
from Lemma 5.6. This implies that $\sum_{k=1}^{\infty} |f_k(x)|$ is finite μ-a.e. on $B(O,L)$ for all $L \in \mathbb{N}$. Hence, $\sum_{k=1}^{\infty} |f_k(x)|$ is finite μ-a.e. on \mathbb{R}^d. With this in mind, let us set $g(x) = \sum_{k=1}^{\infty} f_k(x)$ whenever the series is absolutely convergent; otherwise set $g(x) = 0$.

We fix a ball $B(a,r)$. Then we have
\[
\|g - f_1 - f_2 - \cdots - f_k\|_{\Phi,B(a,r)}
\leq \inf \left\{ \lambda > 0 : \int_{B(a,r)} \frac{|g(x) - f_1(x) - f_2(x) - \cdots - f_k(x)|}{\lambda} \, d\mu(x) \leq r^n \right\}
\leq \inf \left\{ \lambda > 0 : \liminf_{K \to \infty} \int_{B(a,r)} \frac{1}{\lambda} \left| \sum_{j=k+1}^{K} f_j(x) \right| \, d\mu(x) \leq r^n \right\}
\leq \inf \left\{ \lambda > 0 : \liminf_{K \to \infty} \int_{B(a,r)} \frac{1}{\lambda} \left| \sum_{j=k+1}^{K} |f_j(x)| \right| \, d\mu(x) \leq r^n \right\}
\leq \phi(r) \sum_{j=k+1}^{\infty} \|f_j\|_{L^{\Phi,\phi}(\mu)}.
\]
As a result, $g \in L^{\Phi,\phi}(\mu)$ and
\[
\|g - f_1 - f_2 - \cdots - f_k\|_{L^{\Phi,\phi}(\mu)} \leq \sum_{j=k+1}^{\infty} \|f_j\|_{L^{\Phi,\phi}(\mu)}.
\]
So, $\sum_{j=1}^{\infty} f_j$ converges to g in $L^{\Phi,\phi}(\mu)$.

The proof of Theorem 5.2 is similar; we use the embedding
\[
\|f\|_{wL^1(B(a,r),\mu)} \leq C \|f\|_{wL^{\Phi,\phi}(\mu)}
\]
which follows from Lemma 5.6.

5.2 Proof of Theorem 5.3

We first concentrate on the maximal operator; we modify the argument to prove the boundedness of singular integral operator later.

The proof hinges upon the decomposition in Proposition 3.2; keeping the same notation as before. As for f_2, we have a pointwise estimate, so that a small modification works. Also, we normalize $\|f\|_{L^{\Phi,\phi}(\mu)} = 1$.

Let us concentrate on f_1. Let us establish
\[
\gamma \|\chi_{\{Mf_1 > 2\gamma\}}\|_{\Phi,B(a,r)} \leq C
\]
for any $\gamma > 0$, where the constant $C > 0$ is independent of γ and f. Write
\[
\Lambda = \|\chi_{\{Mf > 2\gamma\}}\|_{\Phi,B(a,r)}. \]
Then we have
\[
\mu_{\{Mf \geq 2\gamma\}} \Phi \left(\frac{1}{\Lambda} \right) = \frac{1}{r^n} \int_{B(a,r)} \Phi \left(\frac{\chi_{\{Mf > 2\gamma\}}(y)}{\Lambda} \right) d\mu(y) = 1
\]
by virtue of the dominated convergence theorem. So, we have
\[
1 \leq C \frac{1}{r^n} \Phi \left(\frac{1}{\Lambda} \right) \|f\chi_{\{|f| > \gamma\}}\|_{L^1(B(a,2r),\mu)}.
\]
So,
\[
r^n \leq C \int_{B(a,2r)} \Phi \left(\frac{1}{\Lambda} \right) \frac{|f(x)|\chi_{\{|f| > \gamma\}}(x)}{\gamma} d\mu(x)
\]
Since
\[
|f(x)|\chi_{\{|f| > \gamma\}}(x) \in \{0\} \cup [1, \infty),
\]
we have (by the convexity of Φ)
\[
r^n \leq C \int_{B(a,2r)} \Phi \left(\frac{|f(x)|\chi_{\{|f| > \gamma\}}(x)}{\gamma \Lambda} \right) d\mu(x)
\]
In view of the doubling property, we are done with the maximal operator.

As for the singular integral operator, we combine the above proof and that of Theorem 4.2. We mimic the argument above for f_1 while we use the estimate (4.2) obtained in the proof of Theorem 4.2. We omit the further details.

5.3 Proof of Theorem 5.4

We start with the proof of a Hedberg type inequalities. Let $R > 0$. Then, as in (3.3), we have
\[
|I_{\rho}f(x)| \leq \int_{\mathbb{R}^d} \frac{\rho(|x-y|)}{|x-y|^d} |f(y)| d\mu(y)
\]
\[
\leq \int_{B(x,R)} \frac{\rho(|x-y|)}{|x-y|^d} |f(y)| d\mu(y) + \int_{\mathbb{R}^d \setminus B(x,R)} \frac{\rho(|x-y|)}{|x-y|^d} |f(y)| d\mu(y)
\]
\[
\leq C \left(M^n f(x) \phi(R)^{b-1} + \|f\|_{L^{\Phi,\phi(\mu)}} \phi(R)^b \right).
\]
So, we are led to
\[
|I_{\rho}f(x)| \leq C \left(M^n f(x)^b \|f\|_{L^{\Phi,\phi(\mu)}}^{1-b} + \|f\|_{L^{\Phi,\phi(\mu)}} \inf_{r > 0} \phi(r)^b \right)
\]
as we did in Proposition 3.1.

So, we have to prove
\[
\frac{\gamma}{\psi(r)} \|\chi_{\{x \in B(a,r) : \|f\|_{L^{\Phi,\phi(\mu)}} \inf_{r > 0} \phi(r)^b \}}\|_{\Psi,B(a,r)} \leq C \|f\|_{L^{\Phi,\phi(\mu)}}
\]
and
\[\frac{\gamma}{\psi(r)} \| \chi \{ x \in B(a,r) : M^n f(x)^b \| f \|_{L^p,\Phi,\phi(\mu)}^{1-b} \geq \gamma \| \} \| \Phi, B(a,r) \leq C \| f \|_{L^p,\Phi,\phi(\mu)}. \]

As for the first inequality, we use the following observation:
\[\frac{\gamma}{\psi(r)} \| \chi \{ x \in B(a,r) : \inf_{r' > 0} \phi(r')^b \geq \gamma \| \} \| \Phi, B(a,r) \leq \frac{1}{\psi(r)} \| f \|_{L^p,\Phi,\phi(\mu)} \inf_{r' > 0} \phi(r')^b. \]

In view of the definition of \(\psi \), we are done with the estimate.

As for the second inequality, we proceed as follows:
\[
\frac{\gamma}{\psi(r)} \| \chi \{ x \in B(a,r) : M^n f(x)^b \| f \|_{L^p,\Phi,\phi(\mu)}^{1-b} \geq \gamma \| \} \| \Phi, B(a,r) \]
\[= \frac{\gamma}{\phi(r)^b} \left(\| \chi \{ x \in B(a,r) : M^n f(x)^b \| f \|_{L^p,\Phi,\phi(\mu)}^{1-b} \geq \gamma^{1/b} \| \Phi, B(a,r) \right) \]
\[= \left(\frac{\gamma^{1/b}}{\phi(r)} \right) \| \chi \{ x \in B(a,r) : M^n f(x)^b \| f \|_{L^p,\Phi,\phi(\mu)}^{1-b} \geq \gamma^{1/b} \| \Phi, B(a,r) \}
\]
\[\leq C \| f \|_{L^p,\Phi,\phi(\mu)}. \]

Here, for the last inequality, we used Theorem 5.3.

ACKNOWLEDGEMENTS. The authors thank Prof. E. Nakai of Ibaraki University for his useful comments on the original manuscript. The first and second authors are supported by ITB Research and Innovation Program 2013. The third author is partially supported by Grant-in-Aid for Scientific Research (C), No. 24540174, Japan Society for the Promotion of Science.

References

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.